
Notes on performance-related changes to the s4vd package

Bryan W. Lewis

blewis@illposed.net

November 5, 2024

1 Introduction

This note outlines a few performance improvements and bug �xes a�ecting the ssvdBC and ssvd

functions.

Portions of the functions that rely on a low-rank singular value decomposition require many
fewer arithmetic operations than their original counterparts. The algorithms used by the modi�ed
functions, outlined below, are mathematically equivalent to the originals. Numerical clustering
results should agree closely to within the limits of machine epsilon and di�erences in accumulated
roundo� errors.

The ssvdBC function in the original package contains a minor bug a�ecting cases when the rank
of the approximation matrix is greater than one. In those cases, modi�ed function will produce
di�erent clustering results than the original.

2 Modi�ed methods

The following sections describe the changes we made to several portions of the package.

2.1 Partial SVD

The s4vd package uses the default R svd function to compute a rank-one singular value decomposi-
tion (SVD) of the data matrix or de�ated data matrix at each step. The default R svd function uses
a numerical method that computes a full decomposition�much more information than is required
by the biclustering method. The modi�ed function uses the irlba package[2] to e�ciently produce
the required low-rank decomposition.

The s4vd Package

The computational savings of irlba over the original svd varies with the input data, but can be
signi�cant. The modi�ed functions also avoid recomputing the SVD unnecessarily, yielding further
computational savings.

The change in partial SVD computation a�ects the ssvd function.

2.2 BIC Optimization Loop

Equations (12) and (13) in the biclustering paper of Lee, Shen, Huange, and Marron[1], and in
the corresponding s4vd R code[4] are performance bottlenecks. These notes consider just equation
(12)�similar observations apply to Eqn. (13). Equation (12) presents the minimization problem:

min
λv

(
∥Y − Ŷ ∥2F

ndσ̂2
+

log(nd)

nd
d̂f(λv)

)
,

where,

Ŷ = uvTλv
,

vλv = thresholded vector depending onλv,

uTu = 1.

The computationally expensive part of Eqn. (12) is evaluation of ∥Y − Ŷ ∥2F for each new vλv .
We can exploit the fact that u is orthonormal to signi�cantly reduce the computational cost (also
noting that Ŷ ⊥ range(I − uuT) by construction):

∥Y − Ŷ ∥2F = ∥(I − uuT)(Y − Ŷ)∥2F + ∥uuT (Y − Ŷ)∥2F
= ∥(I − uuT)Y ∥2F + ∥u(uTY − uT Ŷ)∥2F
= ∥(I − uuT)Y ∥2F + ∥u(uTY − uTuvTλv

)∥2F
= ∥(I − uuT)Y ∥2F + ∥u(uTY − vTλv

)∥2F
= ∥(I − uuT)Y ∥2F + ∥uTY − vTλv

∥22.

(The last identity is easy to show.)

Note that the �rst term of the sum,

∥(I − uuT)Y ∥2F ,

does not depend on λv at all and is simply a constant term in the minimization problem (and thus,
does not a�ect the optimization). Then

min
λv

(
∥Y − Ŷ ∥2F

ndσ̂2
+

log(nd)

nd
d̂f(λv)

)
= min

λv

(∥uTY − vTλv
∥22

ndσ̂2
+

log(nd)

nd
d̂f(λv)

)
.

2

The s4vd Package

Moreover, the term uTY does not depend on λv and may be computed just once at the beginning
of each BIC optimization loop.

In summary, we've replaced an expensive evaluation of a matrix Frobenius norm in Eqn. (12),
∥Y − Ŷ ∥2F , with a cheaper evaluation of a Euclidean norm of a vector, ∥uTY − vTλv

∥22.

The optimizations outlined in this section apply to the ssvd function.

2.3 Parallel loop evaluation

The two BIC optimization for loops described in the reference paper[1] and implemented in the
s4vd package contain completely independent loop iterations. Thus the iterations can be computed
in parallel. R includes many mechanisms for parallel loop evaluation.

We modi�ed the loops to use the foreach[3] package. The foreach package provides a simple way
to dynamically choose from among many available parallel evaluation frameworks (called parallel

back ends). The loops run sequentially if a parallel back end is not explicitly speci�ed. Available
parallel back ends include the doSNOW, doMC, doMPI, doRedis packages. See the foreach package
documentation for more information.

The optimizations outlined in this section apply to the ssvd function.

2.4 Bug in ssvdBC function

Version 1.0 of the package contains an error in the biclustering function that calls the ssvd function.
The ssvdBC function erroneously uses the kth singular vectors when calling ssvd in each �layer�
loop. It should always use the 1st singular vectors of the de�ated matrix (since the previous subspace
has already been de�ated away). We modi�ed the ssvdBC function to use the 1st singular vectors
of the de�ated matrix in each layer.

This change only a�ects results that compute more than one solution layer.

3 Example

We walk through a simple, small example included in the s4vd package to illustrate the use of the
new functions. The example �rst computes a result using the original functions present in version
1.0 of the s4vd package, and then computes a result using the modi�ed functions from version 1.1
s4vd package.

This example should be run from a fresh R session, before loading the s4vd package.

3

The s4vd Package

Listing 1: Example.

install.packages("s4vd")

library("s4vd")

example data set according to the simulation study in Lee et al. 2010

generate artificial data set and a corresponding biclust object

u <- c(10,9,8,7,6,5,4,3,rep(2,17),rep(0,75))

v <- c(10,-10,8,-8,5,-5,rep(3,5),rep(-3,5),rep(0,34))

u <- u/sqrt(sum(u^2))

v <- v/sqrt(sum(v^2))

d <- 50

set.seed(1)

X <- (d*u%*%t(v)) + matrix(rnorm(100*50),100,50)

params <- info <- list()

RowxNumber <- matrix(rep(FALSE,100),ncol=1)

NumberxCol <- matrix(rep(FALSE,50),nrow=1)

RowxNumber[u!=0,1] <- TRUE

NumberxCol[1,v!=0] <- TRUE

Number <- 1

ressim <- BiclustResult(params,RowxNumber,NumberxCol,Number,info)

perform ssvd biclustering

resssvd <- biclust(X,BCssvd,K=1)

Now repeat computation using the modified routines...

unloadNamespace("s4vd")

devtools::install_github("bwlewis/s4vd")

library(s4vd)

resssvd_new <- biclust(X,BCssvd,K=1)

Compare the results

Original s4vd jaccardind output

print(jaccardind(ressim,resssvd))

[1] 0.8333333

New s4vd jaccardind output

print(jaccardind(ressim,resssvd_new))

[1] 0.8333333

4

The s4vd Package

References

[1] Biclustering via Sparse Singular Value Decomposition, M. Lee, H. Shen, J. Huang, J. S. Marron,
Biometrics 66, pp. 1087-1095, December 2010.

[2] Augmented Implicitly Restarted Lanczos Bidiagonalization Methods, J. Baglama and L. Re-
ichel, SIAM J. Sci. Comput. 2005.

[3] http://cran.r-project.org/web/packages/foreach The foreach package

[4] http://cran.r-project.org/web/packages/s4vd The s4vd package

5

http://cran.r-project.org/web/packages/foreach
http://cran.r-project.org/web/packages/s4vd

	Introduction
	Modified methods
	Partial SVD
	BIC Optimization Loop
	Parallel loop evaluation
	Bug in ssvdBC function

	Example

